A review of runoff generation and soil erosion across scales in semiarid
south-eastern Spain

Y. Cantón a,⁎, A. Solé-Benet b, J. de Vente c, C. Boix-Fayos d, A. Calvo-Cases e, C. Asensio a, J. Puigdefàbregas b

⁎Dpto. de Edafología y Química Agrícola, Universidad de Almería, Almería, Spain
bDpto. Desertiﬁcación y Genezología, Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
cSchool of Geosciences, University of Aberdeen, United Kingdom
dDpto. de Conservación de Suelos y Agua y Manejo de Residuos Orgánicos, Centro de Edafología y Biología Aplicada del Segura, CSIC, Murcia, Spain
eDepartamento de Geografía, Universidad de Valencia, Valencia, Spain

A R T I C L E I N F O

Article history:
Received 15 June 2010
Received in revised form 18 February 2011
Accepted 15 March 2011
Available online 9 April 2011

Keywords:
Runoff
Erosion
Connectivity
Modelling
Soil degradation
Scale
Hillslope
Catchment

A B S T R A C T

Climate, lithology, soil and especially, intense land use/cover changes, make SE Spain very vulnerable
to runoff generation and water erosion leading to loss of nutrients and organic matter and to infre-
quent but devastating ﬂoods, reservoir siltation and mass failures. This susceptibility has led to heavy
economic investment and research efforts since the 1980s, making this region a worldwide reference
for understanding the hydrology and geomorphology of semiarid ecosystems. Runoff and soil erosion
have been intensively studied throughout the last decades in various natural ecosystems as well as in
abandoned farmlands. Research has considered a wide range of methods and spatial and temporal
scales. This paper reviews the methods and data describing runoff generation and water erosion,
synthesising the key processes involved, rates, thresholds and controlling factors from a scale-
dependent perspective. It also identiﬁes the major gaps in current knowledge to provide recom-
endations for further research towards solutions that reduce the negative impacts of erosion.
Research in SE Spain has contributed signiﬁcantly to a better understanding of the effect of spatial and
temporal scale on runoff and sediment yield measurements, and highlighted the important role of
distinct erosion and sediment transport processes, hydrologic connectivity, spatial and temporal
patterns of rainfall, the occurrence of extreme events and the impacts of land use changes. The most
effective ways and challenges to predict runoff, soil erosion and sediment yield at the catchment scale
are also discussed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The most important changes that soils have undergone during the past two centuries are the consequence of human communities which have accelerated soil erosion rates and rerouted nutrient ﬂows (McNeill and Winiwarter, 2004). Such human impacts have been very intense in south-eastern Spain, a region with a long history of human settlement where anthropogenic land use changes have been especially drastic in the second half of the past century (Burke and Thornes, 2004), triggering soil erosion and leading to severe land degradation. These land use changes, along with its climate, with scarce and torrential rainfalls, steep slopes and the fragility of its soil (low levels of organic matter, aggregate stability and nutrients) make this region very prone to surface sealing, runoff generation and water erosion (García-Ruiz, 2010).

This in turn leads to soil and nutrient loss, soil organic matter decline and infrequent but devastating ﬂoods, reservoir siltation and mass failures (Burke and Thornes, 2004). In this framework, soil erosion, by itself and also in its overriding role in desertiﬁcation, has become a matter of public concern since the 1980s in SE Spain, and intense research has been done in the context of EU research projects (e.g. MEDALUS (Mediterranean Desertification and Use) I, II and III, MEDACTION, PESERA, RECONDES etc) and others supported by regional or national funds (e.g. LUCDEME: Fighting against Desertiﬁcation in the Mediterranean). Heavy economic investment and research efforts have resulted in signiﬁcant progress in understanding the hydrology and geomorphology of semiarid ecosystems, making the region a worldwide reference for soil erosion and hydrological research in semiarid environments. Most research has been done in natural ecosystems and recently abandoned farmlands (since about the 1960s) on which this review is focused, though, in SE Spain today, the main actual water erosion problems are associated with abandonment of...